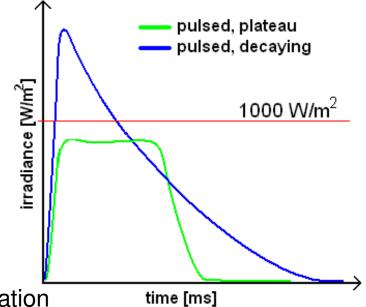
Solar Simulation Standards and QuickSun[®] Measurement System

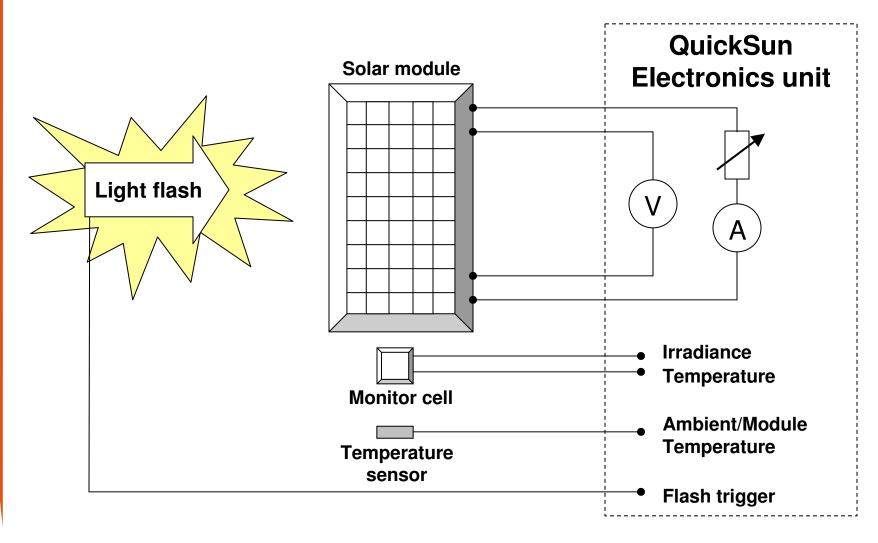
Antti Tolvanen Endeas Oy

Endeas in Brief

- QuickSun® Solar Simulators
- Technology invented 1996 in Fortum (www.fortum.com)
- Endeas Oy licenses technology 2001
- Endeas today:
 - \checkmark > 200 simulators delivered
 - ✓ turnover ~ 4 M€

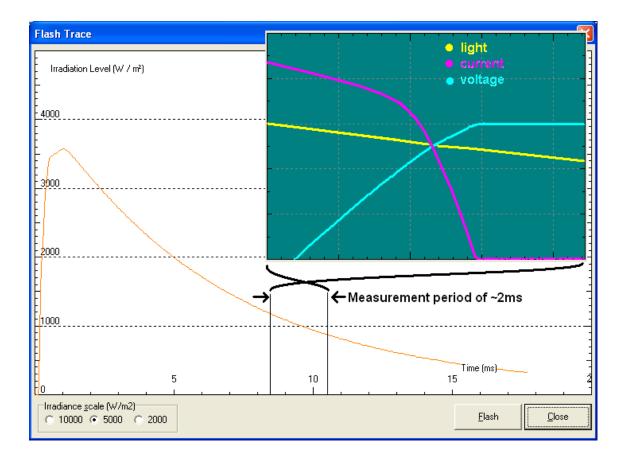

Solar simulation

- Measurement of the electrical characteristics (most important P_{max}) of solar cells and modules at comparable and repeatable conditions
- International and national standards specify simulator performance
 requirements and measurement methods and conditions
- Done mainly to verify quality of solar cells and sort according to power, and to inspect and sort final products in PV module manufacturing. Important also in R&D.
- Standard testing conditions (STC)
 - 1000 W/m²
 - 25℃
 - AM1.5G spectrum
- Correction procedures for temperature and irradiance

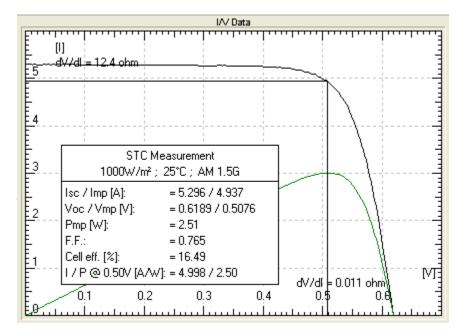


Simulator types

- Steady state / constant light
 - Heat load, cooling, high power consumption
- Pulsed light
 - No heating of the sample
 - Fast measurement, no temperature leveling
- Pulsed light, decaying
 - Can measure easily at different irradiation levels
 - Measurement of series resistance
 - High peak irradiance easily reached
 - More refined analysis possible (IDCAM)



Measurement principle


Measurement principle, cont.

- Flash pulse is triggered, irradiance measured with monitor cell.
- When target irradiance level is reached, I-V measurement initiated. Typically at 1200 W/m².
- Module is swept from short circuit to open circuit during the following approx. 2 ms. Voltage, current and irradiance signals are recorded simultaneously.

Measurement principle, cont.

- QuickSun measures 4096 raw data points for each signal; current, voltage and irradiance
- Data is averaged in groups of eight to obtain 512 I-V graph data points. This reduces measurement noise.
- Measured I-V data is corrected for irradiance and temperature to defined conditions.
- The I-V curve is obtained, with relevant measurement parameters.

International Standards for solar simulation

- Solar simulator performance requirements
 - IEC 904-9 (2nd ed.)
- Cell and module measurement procedure
 - IEC 904-1 (2nd ed.)
- Irradiance and temperature correction procedures and coefficients
 - IEC 891

Other relevant standards

- IEC 904-2 Requirements for reference solar devices
 - requirements for selection, packaging, calibration, marking and care of reference solar cells and modules
- IEC 1215 Crystalline silicon terrestrial photovoltaic (PV) modules Design qualification and type approval
 - type approval: visual inspection, performance@STC, insulation test, determination of α and β , NOCT, performance@NOCT, performance@low irradiance...
- IEC 1646 Thin-film terrestrial photovoltaic (PV) modules Design qualification and type approval
- IEC 904-3 Measurement Principles for Terrestrial PV Solar Devices with Reference Spectral Irradiance Data
- IEC 904-7 Computation of Spectral Measurement of a PV Device
- IEC 904-8 Guidance for Spectral Measurement of a PV Device

IEC webstore: http://webstore.iec.ch/

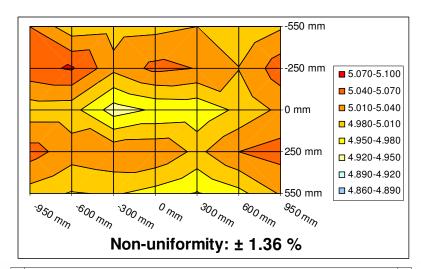
Solar simulator performance requirements

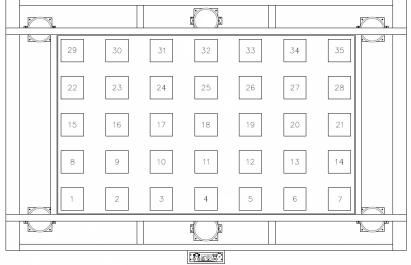
- Standard IEC 904-9 describes the requirements for solar simulators.
- The three key aspects of solar simulator performance:
 - Positional non-uniformity
 - Spectral match
 - Temporal instability (short term, long term)
- Can be applied to all PV technologies, but spectral match criteria designed for c-Si
- For performance measurements a class CBA simulator is the minimum
 - (C = Spectrum, B = Non-uniformity, A = STI)
- LTI Specification for Irradiance exposure tests

Characteristic	Class A	Class B	Class C
Spectral match (ratio of the actual percentage of total irradiance to the required percentage specified for each wavelength range)	0,75 – 1,25	0,6 – 1,4	0,4-2,0
Non-uniformity of irradiance	< ± 2%	< ± 5%	< ± 10%
Temporal instability, short term, STI	< ± 0.5%	< ± 2%	< ± 10%
Temporal Instability, long term, LTI	< ± 2%	< ± 5%	< ± 10%
	Minimum req	uirements	

))endeas

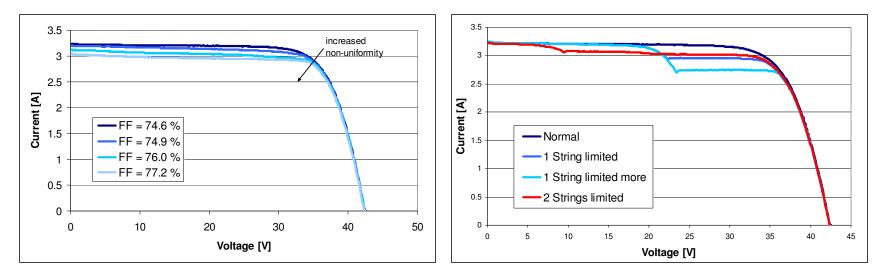
AT


Positional non-uniformity

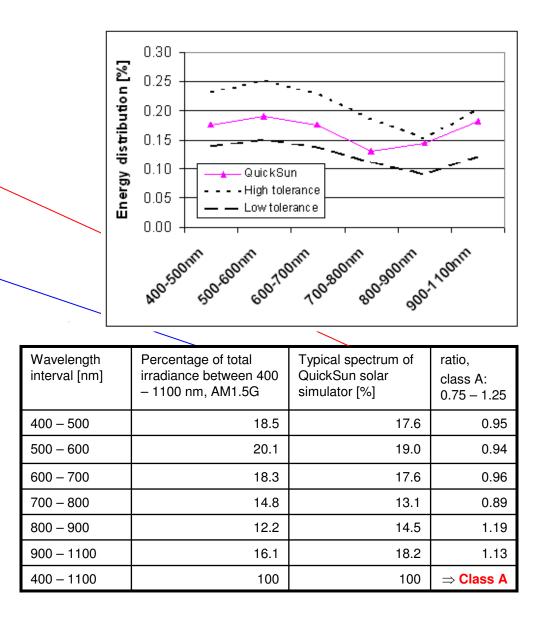

- Class A requirement: < ± 2%
- In practice, measured using the short circuit current of a single solar cell:

$$\Delta E = \frac{E_{\max} - E_{\min}}{E_{\max} + E_{\min}} \cdot 100\%$$

 $\begin{array}{l} \Delta E = \text{positional non-uniformity of irradiance} \\ E_{max} = \text{maximum value of irradiance} \quad (\text{maximum } I_{SC}) \\ E_{min} = \text{minimum value of irradiance} \quad (\text{minimum } I_{SC}) \end{array}$


- Non-uniformity of QuickSun simulators is routinely checked and easily adjusted and maintained
- The positional non-uniformity of all QuickSun solar simulators is class A

Effects of non-uniformity

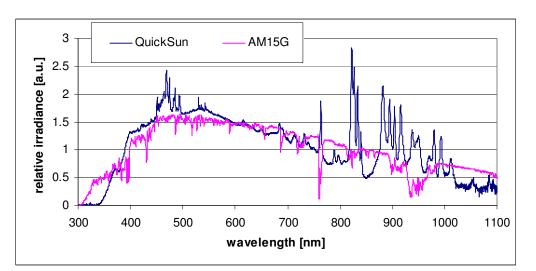

- Increasing non-uniformity affects IV curve
- Situation can be identified from elevated FF
- If non-uniformity affects only a part of the module, IV curve is deformed (when module has bypass diodes)

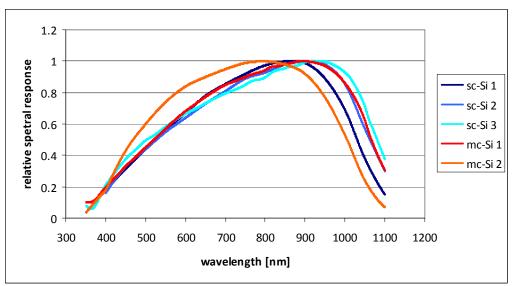
- Current mismatch of cells/strings causes same effects as non-uniform irradiance
- Poor non-uniformity causes problems with irradiance calibration. Module position and orientation affect result.
- If there are no bypass diodes, the effect is always as in left picture

Spectral match

- Defined as the ratio of actual irradiance to the percentage of total irradiance of reference spectrum in distinct wavelength ranges.
- Reference spectrum is AM1.5G
- QuickSun spectrum measured with OceanOptics spectrometer. TÜV using same technology.
- Measurement is triggered at the same instant as the actual I-V measurement, integration time is 3 ms.

endeas


AT


Spectral match, cont.

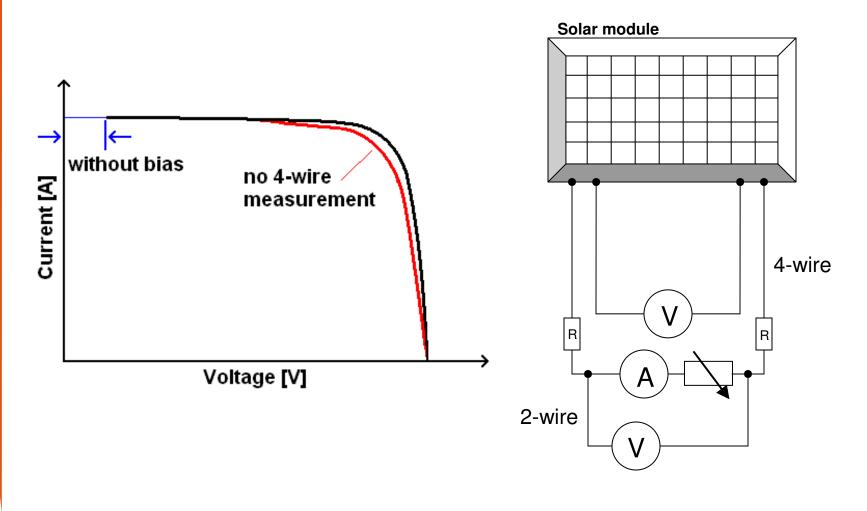
 Spectral effects can be corrected with Mismatch factor

$$M = \frac{I_{\text{ref, AM1.5G}}}{I_{\text{ref, Simulator}}} \frac{I_{\text{Cell, Simulator}}}{I_{\text{Cell, AM1.5G}}}$$
$$I_{\text{ref, AM1.5G}} = \int SR(\lambda)E(\lambda)d\lambda$$

- Typically, the correction is small, only performed at institutes for reference measurements
- In practice, effects eliminated by using a matched reference cell/module

AT

Temporal instability


- Short term instability (STI) refers to the change in light intensity during the acquisition of single data point.
- If irradiance is measured simultaneously with current and voltage, STI is class A
- Long term instability (LTI) on pulsed solar simulators refers to the change in light intensity during the measurement of IV graph.
- Only STI of class A is required for performance measurements of solar devices.

Cell and module measurement

- Specifications in standard IEC 904-1
- Current and voltage measurement accuracy ± 0.2 %
 - In QuickSun systems data point averaging and software calibration improve accuracy
- 4-wire measurement
 - Standard feature of QuickSun
- Temperature measurement accuracy ± 1 °C
 - QuickSun measures monitor cell and ambient temperature with a precision IC sensors with 0.1 ℃ resolution and ± 1 ℃ accuracy
- Temperature within $25 \pm 2 \, ^{\circ}$ C, if not, a correction to be made
 - Always corrected to desired temperature
- Bias voltage to enable measurement of true short circuit current
 - QuickSun measurement starts at zero voltage

Effect of bias voltage and 4-wire measurement

Cell and module measurement, cont.

- Calibration of the irradiance signal dominates the total accuracy in cell and module measurements.
- Absolute accuracy is determined by the accuracy of the I_{SC} of the reference cell/module.
- Usually I_{SC} measured by an institute (such as NREL, ISE, JQA, ESTI) has an accuracy of only 2 % (at best)
- Spectral response varies ⇒ Each cell type requires own reference
- The irradiance level is set and calibrated in the QuickSun system with better than 1 W/m² resolution
- With factory calibration the guaranteed accuracy of QuickSun irradiance measurement is ± 3 % for silicon solar cells.

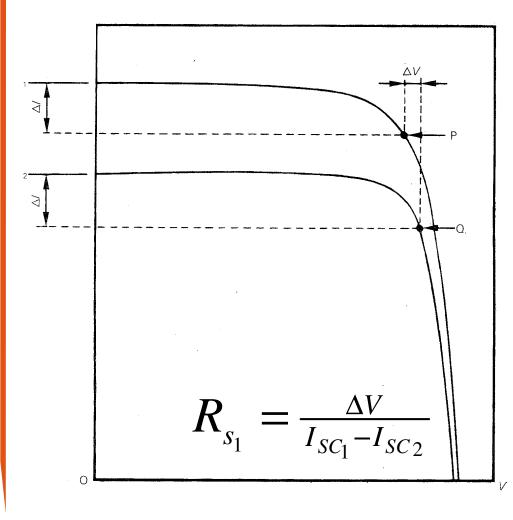
Calculation and correction of measured data

• Correction formulas given in IEC 891

• Current:

$$I_{2} = I_{1} + I_{SC} \begin{bmatrix} \frac{E_{2}}{E_{1}} - 1 \end{bmatrix} + \alpha (T_{2} - T_{1})$$
temperature correction
• Voltage:

$$V_{2} = V_{1} + \beta (T_{2} - T_{1}) - R_{S} (I_{2} - I_{1}) - KI_{2} (T_{2} - T_{1})$$
temperature correction


$$V_{2} = V_{1} + \beta (T_{2} - T_{1}) - R_{S} (I_{2} - I_{1}) - KI_{2} (T_{2} - T_{1})$$
temperature correction

- V₁, I₁, E₁, T₁ are actual measured voltage, current, irradiance and temperature
- V_2 , I_2 , E_2 , T_2 are the corrected characteristics
- α and β are temperature coefficients for current and coltage
- R_s is the series resistance
- K is the curve correction factor

🌶 endeas

AT

Series Resistance (IEC 891)

endeas

AT

Series Resistance Irradiance levels Irradiance1: 1000 W/m² Irradiance2: 900 W/m² Irradiance3: 800 W/m² Measured Series Resistances 285 mOhm Meas1: Meas2: 411 mOhm 349 mOhm Meas3: Mean value: 348 mOhm 10 mOhm/cell Measure Close Measurements done

QuickSun Complience with IEC standards

- IEC 904-9
 - QuickSun simulators comply with AAA classification
 - Performance report is given with every simulator
- IEC 904-1
 - Measurement uncertainty complies with standard
 - Special requirements are standard features (e.g. 4-wire measurement, bias voltage)
- IEC 891
 - Correction is performed automatically

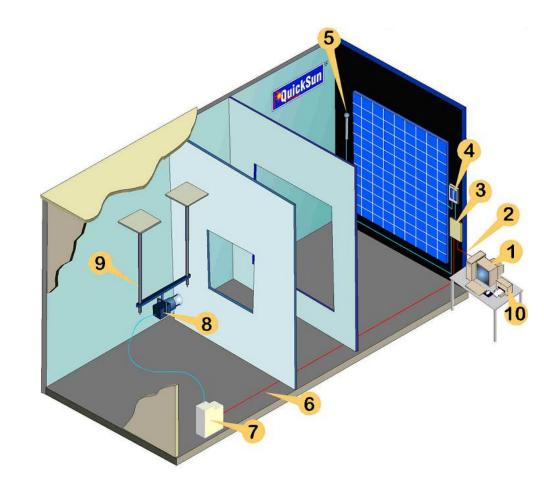
QuickSun Solar Simulators

- QuickSun 120CA Cell Solar Simulator
- QuickSun 700A Large Area Solar Simulator
- QuickSun 540LA In-Line Solar simulator

QuickSun® 120CA Cell Solar Simulator

- Single flash measurement system
- Class A spectrum
- < 2% non-uniformity
- Throughput:

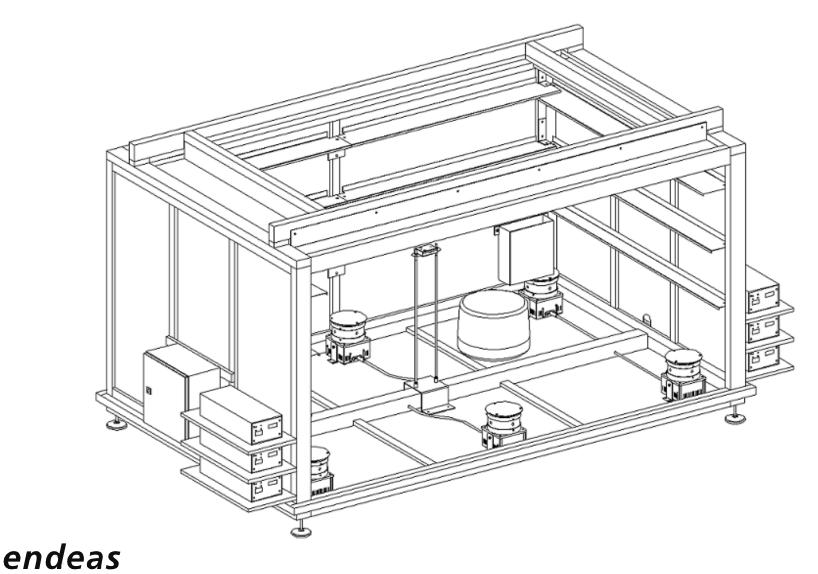
endeas


AT

- Manual model 360 cells/hour
- Automated model 1200 cells/hour
- Average flash lamp lifetime 500 000 flashes
- IDCAM option for detailed cell analysis
- Heating option for temperature coefficient measurements
- Option for Dark IV at reverse voltages

QuickSun 700A Large Area Simulator

- Ideal for manual module
 handling
- Measurement area of up to 160cm x 220cm with nonuniformity < 2%
- Length of flash tunnel only 5.5 m / 4.5 m thanks to proprietary optics
- Throughput depends on area:
 - 60 modules/hour (160x220cm²)
 - 120 modules/hour (130x160cm²)
- Can also be assembled vertically as a tower with module face up

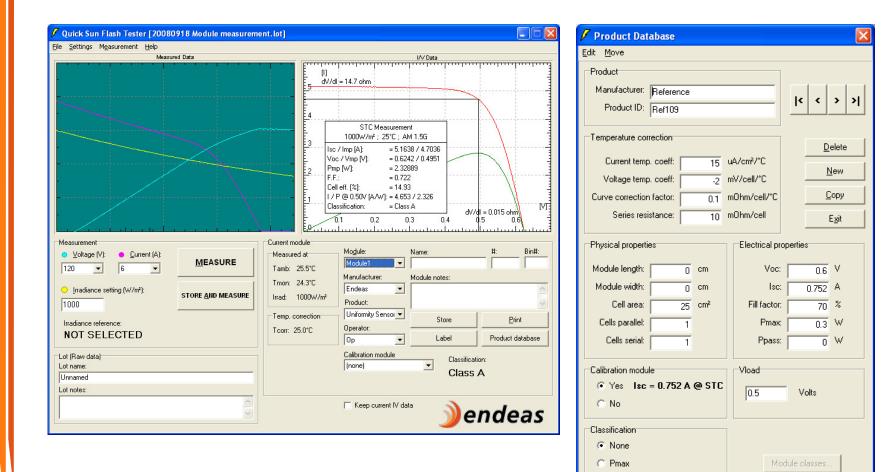

QuickSun[®] 540LA In-Line Solar Simulator

- In-line simulator with high throughput, 180 modules per hour
- Modules measured face down for easy production line integration
- Non-uniformity of the 190 cm x 110cm test area < 2 %
 - Special model for larger modules, max area 205 cm x 135 cm
- Compact, factory footprint saving size (1.6 x 1.7 x 3.0 m³)
- Class A Spectrum

QuickSun[®] 540LA In-Line Solar Simulator

Common features of QuickSun simulators

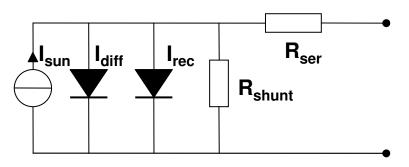
- Single flash measurement
- Class AAA simulator (spectrum, non-uniformity, STI)
- Irradiance level adjustable, 200 1200 W/m², 1 W/m² resolution
- Current and voltage scales adjustable to any value, internal hardware optimizes measurement accuracy accordingly
- Good measurement reproducibility (< 0.25 %)
- Measurement of series resistance
- Proprietary 2-diode analysis option (IDCAM)
- User friendly Windows® software



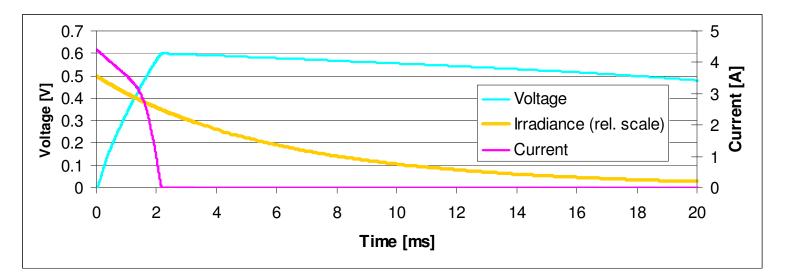
Features of the QuickSun software

- Database for measurement product information (measurement data correction coefficients, module size, performance characteristics)
- Storing of multiple measurements in single file
- Printing of data sheet of measurement results
- Measurement data easily exported to other applications (CSV files) or directly to an external database (Access, MySQL)
- Measurement results can be corrected to other temperatures
- Label printing, barcode reader as an option
- TCP interface to connect to other factory equipment

QuickSun software, cont.

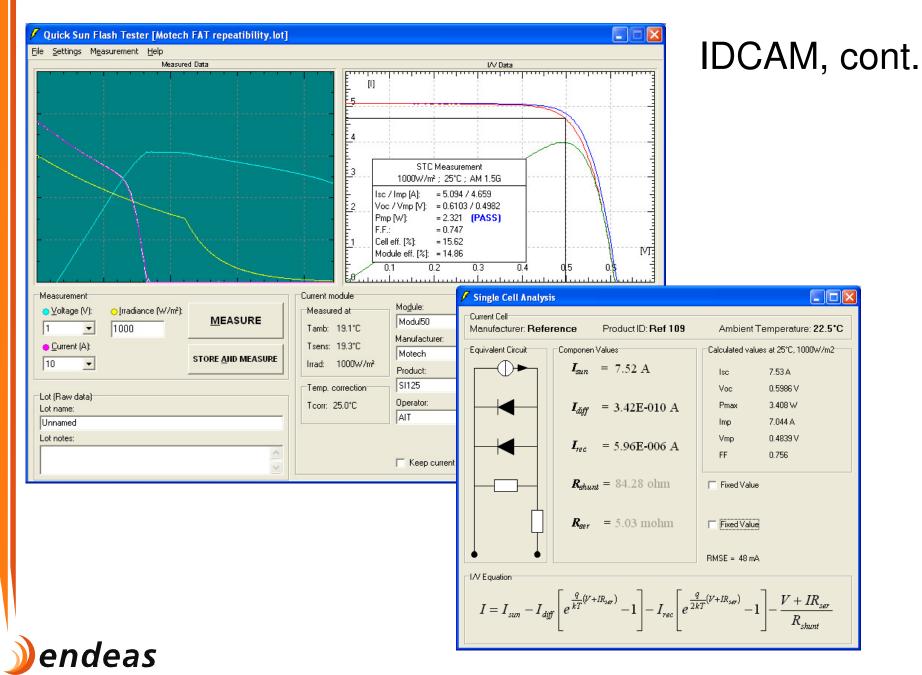

AT

endeas

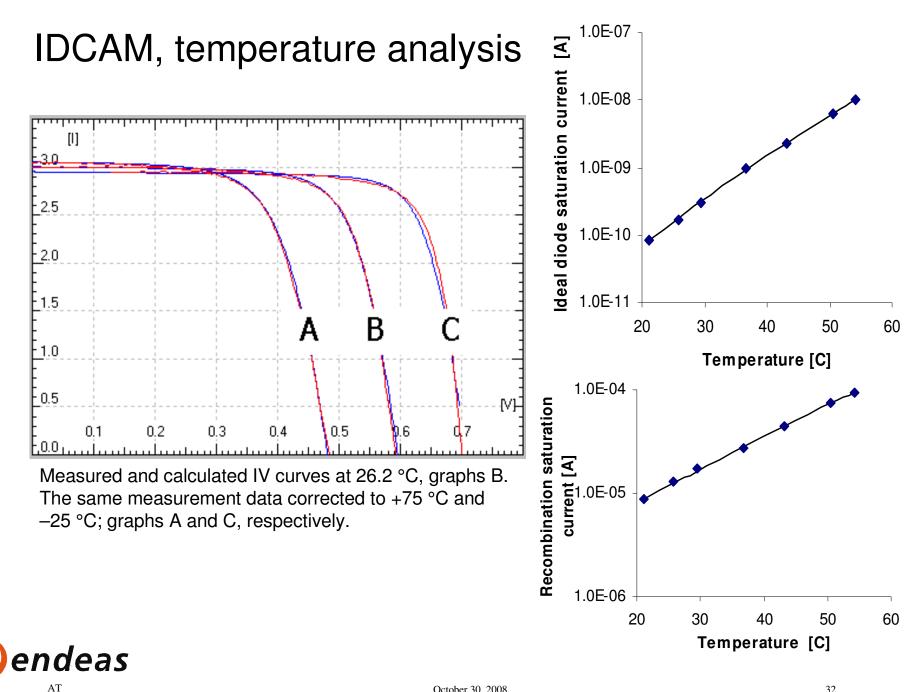

○ I @ Vload

IDCAM

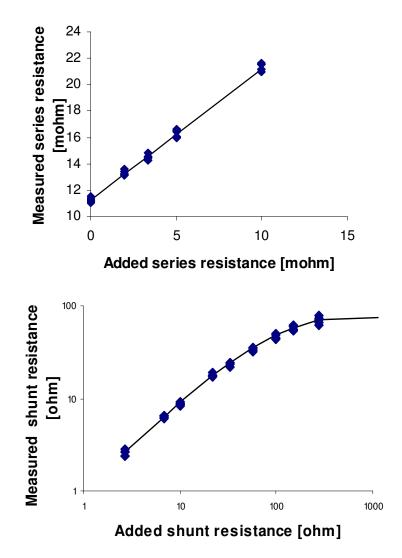
- Irradiance Decay Cell Analysis Method
- Cell parameters of 2-diode model can
 be extracted from a single measurement

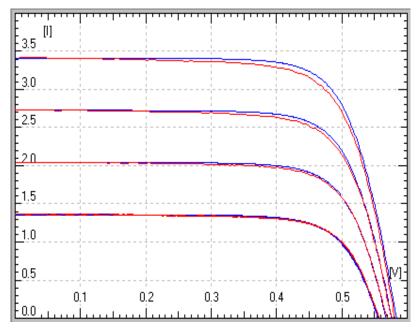


$$I = I_{sun} - I_{diff} \left[e^{\frac{q}{kT}(V + IR_{ser})} - 1 \right] - I_{rec} \left[e^{\frac{q}{2kT}(V + IR_{ser})} - 1 \right] - \frac{V + IR_{ser}}{R_{shunt}}$$

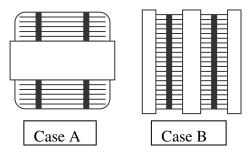


))endeas


AT



AT



IDCAM, analysis cont.

Calculated and measured IV graphs at 1000, 800, 600 and 400 W/m^2 .

Solar-Power report by TÜV (2005)

- Goal of the Solar-Power project was to develop harmonized procedures for PV module output measurements.
- SMEs combined efforts to improve their testing methods
- Improve power control
 - sorting in power classes
- Reduce manufacturing tolerances
 - strenghten market position
- Evaluation of solar simulator performance

Solar-Power

1

Development of Innovative Quality Assurance Measures to Improve the Efficiency of Solar Panel Production

> Contract: CRAFT-1999-72232

FINAL REPORT

Project duration: 1st May 2003 to 30th April 2005

Co-ordinator: IPEG GmbH Gewerbegebiet Beerwalde Windmühlenstr. 2 04626 Löbichau Germany

SME Project Partners: Swiss Sustainable Systems AG, Switzerland Arctic Solar AB, Sweden Bluenergy Germany AG, Germany Millennium Electric TOU, Israel Solarwatt Solar-Systeme GmbH, Germany Helios Technology SRL, Italy Enfoton Solar Ltd., Cyprus¹

R&D Performer: TÜV Immissionsschutz und Energiesysteme GmbH, Germany

Research funded in part by THE EUROPEAN COMMISSION Within the Fifth Framework Programme

1 Enfoton Solar has replaced S.W.S (contract amendment No. 1)

Solar-Power report by TÜV, cont.

Participant	Туре	Supplier, model
IPEG	Long-pulse	LEC, FS-PSS
3S	Steady-state	Tungsten halogen
Arctic Solar	Long-pulse	ENDEAS, QuickSun
Bluenergy	Steady-state	H.A.L.M., LED array (planned)
Millennium	Short-pulse	SPIRE, SPI-SUN
Solarwatt	Long-pulse	BERGER, PSS-8
Helios	Short-pulse	Self-development
Enfoton	Long-pulse	LEC, FS-PSS

 Table 5.1.3: Available solar simulator systems in the project consortium

QuickSun only AAA simulator

Only QuickSun's spectrum matches AM1.5G

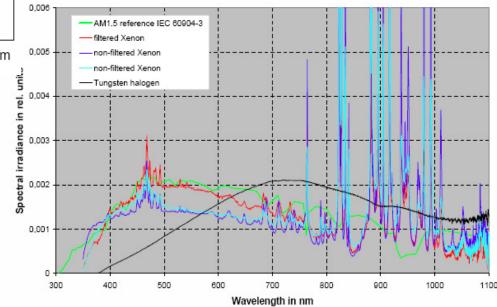
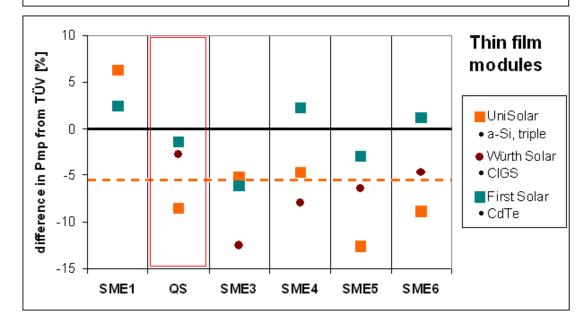


Figure 5.1.8: Spectral irradiance of solar simulators in the SME consortium normalised to AM 1.5 reference spectral irradiance.


Irradiance non-uniformity: class A Spectral match: class A Temporal instability: class A

all others: BCA

Solar-Power, round robin

- Round robin test on all simulators and PV modules of different technologies
- QuickSun was top performer

12 Crystalline Silicon difference in P_{mP} from TÜV [%] 10 ۸ 8 Arctic Solar 6 • multi-Si 4 SolarFactory • multi-Si 2 <u>2</u> ▲ SolarFactor√2 0 • mono-Si . -2 -4 SME1 os SME3 SME4 SME5 SME6

 - • Power of UniSolar module outdoors, measured by Endeas

endeas

AT

Thank you for your attention

More information: www.endeas.fi

Antti Tolvanen Endeas Oy antti.tolvanen@endeas.fi

